Abstract
Seagrass meadows are a significant blue carbon sink due to their ability to store large amounts of carbon within sediment. However, the knowledge of global greenhouse gas (GHG) emissions from seagrass meadows is limited, especially from meadows in the tropical region. Therefore, in this study, CO2 and CH4 emissions and carbon metabolism were studied at a tropical seagrass meadow under various conditions. CO2 and CH4 emissions and carbon metabolism were measured using benthic chambers deployed for 18 h at Koh Mook, off the southwest coast of Thailand. The samples were collected from areas of patchy Enhalus acoroides, Thalassia hemprichii, and bare sand three times within 18 h periods of incubation: at low tide at 6 pm (t0), at low tide at 6 am (t1), and at high tide at noon (t2). Seagrass meadows at Koh Mook exhibited varying CO2 and CH4 emissions across different sampling areas. CO2 emissions were higher in patchy E. acoroides compared to patchy T. hemprichii and bare sand areas. CH4 emissions were only detected in vegetated areas (patchy E. acoroides and T. hemprichii) and were absent in bare sand. Furthermore, there were no significant differences in net community production across sampling areas, although seagrass meadows were generally considered autotrophic. Koh Mook seagrass meadows contribute only slightly to GHG emissions. The results suggested that the low GHG emissions from Koh Mook seagrass meadows do not outweigh their role as significant carbon sinks, with a value 320 t CO2 -eq. This study provided baseline information for estimating GHG emissions in seagrass meadows in Thailand.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.