Abstract

Action spectra are important biological weighting functions for risk/benefit analyses of ultraviolet (UV) radiation (UVR) exposure. One important human benefit of exposure to terrestrial solar UVB radiation (∼295 to 315 nm) is the cutaneous synthesis of vitamin D3 that is initiated by the photoconversion of 7-dehydrocholesterol to previtamin D3 An action spectrum for this process that is followed by other nonphotochemical steps to achieve biologically active vitamin D3 has been established from ex vivo data and is widely used, although its validity has been questioned. We tested this action spectrum in vivo by full- or partial-body suberythemal irradiation of 75 healthy young volunteers with five different polychromatic UVR spectra on five serial occasions. Serum 25-hydroxyvitamin D3 [25(OH)D3] levels, as the most accurate measure of vitamin D3 status, were assessed before, during, and after the exposures. These were then used to generate linear dose-response curves that were different for each UVR spectrum. It was established that the previtamin D3 action spectrum was not valid when related to the serum 25(OH)D3 levels, as weighting the UVR doses with this action spectrum did not result in a common regression line unless it was adjusted by a blue shift, with 5 nm giving the best fit. Such a blue shift is in accord with the published in vitro action spectra for vitamin D3 synthesis. Thus, calculations regarding the risk (typically erythema) versus the benefit of exposure to solar UVR based on the ex vivo previtamin D3 action spectrum require revision.

Highlights

  • Action spectra are important biological weighting functions for risk/ benefit analyses of ultraviolet (UV) radiation (UVR) exposure

  • Dose weighting with the Commission Internationale l’Éclairage (CIE) erythema action spectrum showed that the regression slopes of the different spectra, within PB and FB experiments, were significantly different (P < 0.005)

  • We demonstrated a significant relationship between pre- and post-25(OH)D3 in which the higher the baseline, the lesser the response to UV radiation (UVR)

Read more

Summary

Introduction

Action spectra are important biological weighting functions for risk/ benefit analyses of ultraviolet (UV) radiation (UVR) exposure. One important human benefit of exposure to terrestrial solar UVB radiation (∼295 to 315 nm) is the cutaneous synthesis of vitamin D3 that is initiated by the photoconversion of 7-dehydrocholesterol to previtamin D3. It was established that the previtamin D3 action spectrum was not valid when related to the serum 25(OH)D3 levels, as weighting the UVR doses with this action spectrum did not result in a common regression line unless it was adjusted by a blue shift, with 5 nm giving the best fit Such a blue shift is in accord with the published in vitro action spectra for vitamin D3 synthesis. Reliable public health advice on optimal solar exposure to obtain vitamin D, yet mitigate risk, requires diverse expertise apart from the vitamin D community This includes photobiologists, dermatologists, epidemiologists, climatologists, atmospheric and UVR measurement physicists, mathematical modelers, and behavior and public health scientists. It should be noted that SED is unlikely to be a good indicator of UVA-induced oxidatively generated damage to a range of biomolecules, including nucleic acids, that may play a role in malignant melanoma that is the most dangerous type of skin cancer [13]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.