Abstract

The heat and moisture transfer process in deformable porous media commonly exists in material drying, solid waste treatment, bioengineering, and so on. The transfer process is accompanied by deformation of the solid skeleton and pore interface structure, which limits the transfer rate and affects quality. Microwave and ultrasound are the main representatives of reinforcement technology. However, as the moisture decreases, the energy utilization efficiency of microwaves decreases significantly. Based on the experimental and theoretical methods, the enhancement mechanism of ultrasound on the process is studied, which provides guidance for the wide application of ultrasonic enhancement. With the increase in ultrasound power, the pore area and the moisture effective diffusion coefficient gradually increase. A macroscope mathematical model for ultrasonic-coupled thermal-hydro-mechanical modeling is developed, and the results show that ultrasound increases the temperature gradient within material, resulting in higher moisture transmission rates with an ordered direction, and the alternating expansion and compression process results in smaller macroscopic deformations. Subsequently, the drying kinetic characteristics of typical deformable porous media such as municipal sludge, porous fibers, and activated alumina particles are investigated. The process parameters of the ultrasonic assisted drying system are optimized using the response surface method and artificial neural network model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call