Abstract
This present investigation focuses on prediction of engine responses of a single cylinder CI engine powered by bio-diesohol (diesel-palm biodiesel-ethanol) blends using RSM (response surface methodology) and ANN (artificial neural network) model. RSM combined with multi-level general full factorial design (FFD) is used for the prediction of brake thermal efficiency (BTE), brake specific fuel consumption (BSEC), and nitrogen oxides (NOx). The engine experimental data is trained in ANN model using Levenberg-Marquardt back propagation training algorithm with logistic-sigmoid activation function. Different statistical measures are calculated to quantify the errors and correlations of the predicted models. Comparatively lower prediction error and higher correlation have been observed from the ANN model compared to RSM. The range of overall mean square error (MSE) and correlation coefficient are found (0.0003–0.00059) & (0.99403–0.998) and (0.00019–0.00035) & (0.99943–0.99971) from RSM and ANN model respectively. The range of overall mean absolute percentage error (MAPE) from ANN model (3.13–4.55%) is found lower compared to RSM model (3.97–6.6%). Thereafter, RSM and ANN predicted responses are introduced in fuzzy logic system for the optimization of engine operating parameters. At 100% load, the D75B20E5 (75% diesel + 20% palm biodiesel + 5% ethanol) blend has been found best for the optimization of BTE, BSEC and NOx emission. Finally, after the confirmation test, it has been revealed that the performance of D75B20E5 blend is as comparable to diesel.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.