Abstract

Purpose: Heart failure is a widespread health concern. A person with a heart failure has 5 years shorter life expectancy compared to a person who has a cancer. Specifically, myocardial disease is usually involved with a treatment accompanied by an electrical conduction system. To alleviate the physical burden to heart due to ventricular pacing, epicardial electronic system made of soft and elastic materials is needed.
 Methodology: In this review, we discuss candidate materials for novel epicardial sensing/stimulation system that matches similar mechanical properties of heart. Materials are categorized as soft conductive materials consist of elastomer and conductive filler and tissue-like low modulus materials. Like hydrogel and its conductive composites.
 Main Findings: The soft nanocomposites integrated with nanomaterials as filler and elastomer/hydrogel as matrix show potential to open a new pathway in high-performance epicardial electronic system that improve accuracy, stability, and long-term usability in diagnosis and treatment of heart diseases.
 Implications: Multifunctional epicardial system that monitors electrical conduction of epicardium surface and stimulate epicardium simultaneously could be a powerful tool to diagnose and treat myocardial disease.
 Novelty: This review study is focused and written in simple terms for readers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.