Abstract

Phytoremediation is perceived as a promising technique for remediation of heavy metal (HM) contaminated soils, while the harvested HM-enriched hyperaccumulator biomass should be appropriately disposed. Recently, various thermal treatments of hyperaccumulator have drawn increasing attention. After thermal treatment, the hyperaccumulator was converted to bio-oil, bio-gas, biochar, or ash in accordance with the corresponding conditions, and the HMs were separated, immobilized, or trapped. The migration and transformation of HMs during the thermochemical conversion processes are critical for the safe disposal and further utilization of HM hyperaccumulator. This paper provides a systematic review on the migration and transformation of typical HMs (Cd, Ni, Mn, As, and Zn) in hyperaccumulator during various thermochemical conversion processes, and special emphasis is given to the production and application of targeted products (e.g. biochar, hydrochar, bio-oil, and syngas). Besides, future challenges and perspectives in the thermal treatment of hyperaccumulator are presented as well. The distribution and speciation of HMs were influenced by thermal technique type and reaction conditions, thereby affecting the utilization of the derived products. This review suggests that speciation and availability of HMs in hyperaccumulator are tunable by varying treatment techniques and reaction conditions. This information should be useful for the selective conversion of hyperaccumulator into green and valuable products.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.