Abstract

ABSTRACT: Since the demand for effective and sustainable energy solutions has been on the rise, the field of energy storage has made tremendous strides. Due to their special mix of features, polymer nanocomposites—materials made of polymers and nano-scale fillers have become intriguing materials for energy storage applications. The most current advancements in polymer nanocomposites for energy storage applications are presented in detail in this review study. The work starts with an overview of the fundamental ideas and difficulties surrounding energy storage, then it explores the synthesis and characterization methods employed to create polymer nanocomposites. The many types of nano-fillers used in polymer nanocomposites are then described, including conductive polymers, metal oxides, and carbon-based nano-materials. The main factors influencing how well polymer nanocomposites store energy, such as charge storage capability, conductivity, and cycle stability, are carefully explored. The paper also explores how polymer nanocomposites are used in flexible energy storage systems, lithium-ion batteries, and supercapacitors, among other types of energy storage technology. The impact of interface engineering, morphology, and nanofiller loading on the general effectiveness of polymer nanocomposites is underlined. Additionally, scalability, cost-effectiveness, and environmental impact of polymer nanocomposites for energy storage applications are reviewed, along with their problems and potential for the future. A thorough grasp of the most recent developments in polymer nanocomposites for energy storage applications is the goal of this study, which will make it easier to design and create the next generation of energy storage devices with improved performance and sustainability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call