Abstract

ABSTRACT Silver nanoparticles (AgNPs) and green synthesis have hegemony over their counterparts. This paper reviews- green synthesis mechanism, antimicrobial mechanism and, incorporation of AgNPs in textiles. Green synthesis is nontoxic, unlike chemical methods, cost-effective and precise, unlike physical techniques. In green synthesis, the reconversion of biomolecules from NADPH to NADP+releases electrons that reduce silver ions. Harmoniously, the functional groups of biomolecules act as polar-end to formulate steric stabilization. Green synthesized AgNPs are loaded on fabrics through different loading techniques such as pad-dry-cure, immersion, in situ, and others. This review also depicts the feasible mechanisms to explain the antimicrobial action of AgNPs. The antimicrobial activity of AgNPs is adequate for annihilating both gram-positive and gram-negative bacteria. The nanoparticle morphology depends on various constituents such as pH, temperature, concentration, and others. The acidic environment causes a larger nanoparticle size. Typically, the room temperature is enough for green synthesis. Whereas, high concentration of either plant extracts or metal precursors causes large nanoparticles. Hence, various shapes and sizes are possible by consolidating diverse concentrations of plants and metal precursors. Complicated connections may prevail amongst numerous concentrations, pH, temperature, and others with varying phytochemicals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.