Abstract

In today's biomedical research, the pursuit of diagnostic tools boasting maximum precision and accuracy while minimizing sample volume and pre-treatment requirements, has intensified. In this regard, microfluidic devices offer promising solutions by reducing sample size and overall research costs. However, the intricate and time-consuming nature of the data obtained from such devices poses significant challenges. To overcome these difficulties, researchers have increasingly turned to the integration of artificial intelligence (AI) with microfluidic platforms, resulting in the emergence of “AI-integrated microfluidics”. Recent advances in computer-related fields can transform AI from a theoretical science to a useful tool for various studies which is anticipated to become an integral part of human life. This review provides a comprehensive overview of various approaches for combining AI algorithms with microfluidic platforms for analytical and bioanalytical assessments. Highlighting applications ranging from cell classification and disease detection to point-of-care diagnostics, the paper underscores the transformative potential of AI-integrated microfluidics in advancing biomedical research and clinical diagnostics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.