Abstract

Artificial neural networks, or ANNs, find widespread use in real-world scenarios ranging from pattern recognition to robotics control. Choosing an architecture (which includes a model for the neurons) and a learning algorithm are important decisions when building a neural network for a particular purpose. An automated method for resolving these issues is provided by evolutionary search techniques.Genetic algorithms are used to artificially evolve neural networks in a process known as neuroevolution (NE), which has shown great promise in solving challenging reinforcement learning problems. This study offers a thorough review of the state-of-the-art techniques for evolving artificial neural networks (ANNs), with a focus on optimizing their performance-enhancing capabilities. Key Words: Artificial neural networks,Neuroevolution, NeuroEvolution of Augmenting Topologies,Brain computer interface.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.