Abstract
Safety and reliability are absolutely important for modern sophisticated systems and technologies. Therefore, malfunction monitoring capabilities are instilled in the system for detection of the incipient faults and anticipation of their impact on the future behavior of the system using fault diagnosis techniques. In particular, state-of-the-art applications rely on the quick and efficient treatment of malfunctions within the equipment/system, resulting in increased production and reduced downtimes. This paper presents developments within Fault Detection and Diagnosis (FDD) methods and reviews of research work in this area. The review presents both traditional model-based and relatively new signal processing-based FDD approaches, with a special consideration paid to artificial intelligence-based FDD methods. Typical steps involved in the design and development of automatic FDD system, including system knowledge representation, data-acquisition and signal processing, fault classification, and maintenance related decision actions, are systematically presented to outline the present status of FDD. Future research trends, challenges and prospective solutions are also highlighted.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.