Abstract

Around 8% of the global carbon dioxide emissions, are generated during cement manufacturing, which also involves significant use of raw materials, leading to adverse environmental effects. Consequently, extensive research is being conducted worldwide to explore the feasibility of utilizing different industrial waste by-products as alternatives to cement in concrete production. Fly ash (FA), Metakaolin (MK), Silica fume (SF), and ground granulated blast furnace slag (GGBS) are potential industrial materials that can serve as cement substitutes in pervious concrete. However, there exist conflicting findings in the literature regarding the impact of industrial supplementary cementitious materials (ISCMs) as partial cement replacements on the physical, mechanical, and durability properties of pervious concrete. The aim of this review is to investigate the feasibility and potential benefits of using ISCMs and compare them as partial cement replacements in the production of pervious concrete. The analysis primarily examines the effect of ISCMs as partial cement replacements on cementitious properties, including properties of ISMCs, mechanical properties, and durability of pervious concrete. The influence of ISCMs primarily stems from their pozzolanic reaction and filler characteristics. SF has the highest reactivity due to its high surface area and amorphous structure, resulting in a rapid pozzolanic reaction. GGBS and FA have moderate reactivity, while MK has relatively low reactivity due to its crystalline structure. Results from various studies indicate that the addition of FA, SF, and MK up to approximately 20% leads to a reduction in porosity and permeability while improving compressive strength and durability due to the filler effect of SF and MK. Incorporating GGBS increases permeability slightly while causing a slight decrease in compressive strength. The range of permeability and compressive strength for pervious concrete incorporating FA, SF, GGBS and MK were 0.17–1.46 cm/s and 4–35 MPa, 0.56–2.28 cm/s and 3.1–35 MPa, 0.19–0.64 cm/s and 8–42 MPa, 0.10–1.28 cm/s and 5.5–41 MPa, respectively, which are in the acceptable range for non-structural application of pervious concrete. In conclusion, it is possible to produce sustainable pervious concrete by substituting up to 20% of cement with FA, SF, GGBS, and MK, thereby reducing cement consumption, carbon footprint, energy usage, and air pollution associated with conventional cement production. However, further research is required to systematically assess the durability properties, long-term behavior, and, develop models for analyzing CO2 emissions and cost considerations of pervious concrete containing ISMCs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.