Abstract

The use of ultrashort pulsed lasers in materials processing is an emerging technology. These lasers have the capability to ablate materials precisely with little or no collateral damage, even with materials that are impervious to laser energy from conventional pulsed lasers. The extreme intensities and short timescale at which ultrashort pulsed lasers operate differentiate them from other lasers. The means of ultrashort pulsed laser generation is discussed; included are a survey of pulse compressor techniques with solid state lasers and a brief discussion of excimer-dye lasers. This is followed by a discussion of specific examples of ultrashort pulsed machining of specific materials, along with mechanistic details. Optical breakdown mechanisms, including electron avalanche ionization and multiphoton absorption are discussed. It is shown that as pulse width increases and intensity decreases, laser damage becomes a stochastic process in which the ultrashort pulsed, high intensity light causes optical breakdown over a very narrow range. This, along with the lack of significant thermal conduction, greatly improves the precision of ultrashort pulsed lasers in micromachining applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.