Abstract

This paper presents a novel design of a time–frequency (t–f) matched filter as a solution to the problem of detecting a non-stationary signal in the presence of additive noise, for application to the detection of newborn seizure using multichannel EEG signals. The solution reduces to two possible t–f approaches that use a general formulation of t–f matched filters (TFMFs) based on the Wigner–Ville and cross Wigner–Ville distributions, and a third new approach based on the signal ambiguity domain representation; referred to as Radon-ambiguity detector. This contribution defines a general design formulation and then implements it for newborn seizure detection using multichannel EEG signals. Finally, the performance of different TFMFs is evaluated for different t–f kernels in terms of classification accuracy using real newborn EEG signals.Experimental results show that the detection method which uses TFMFs based on the cross Wigner–Ville distribution outperforms other approaches including the existing TFMF-based ones. The results also show that TFMFs which use high-resolution kernels such as the modified B-distribution, achieve higher detection accuracies compared to the ones which use other reduced-interference t–f kernels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.