Abstract

Naturally CO2-rich mineral water springs (pouhons) in east Belgium occur in the context of the Rhenohercynian domain of the Variscan fold-and-thrust belt, mostly within the Cambro-Ordovician Stavelot-Venn Massif. The origin of the CO2 is still unclear, although different hypotheses exist. In this review study, we show pouhon waters are of the calcium bicarbonate type (~310 mg/l HCO3- on average), with notable Fe (~15 mg/l) and some Ca (~43 mg/l). Pouhon waters are primarily meteoric waters, as evidenced by H and O isotopic signature. The δ13C of CO2 varies from -7.8 to +0.8‰ and contains up to ~15% He from magmatic origin, reflecting a combination of carbonate rocks and mantle as CO2 sources at depth. Dinantian and Middle Devonian carbonates at 2–6 km depth could be potential sources, with CO2 generated by dissolution. However, carbonates below the Stavelot-Venn Massif are only predicted by structural models that assume in-sequence thrusting, not by the more generally accepted out-of-sequence thrust models. The mantle CO2 might originate from degassing of the Eifel magmatic plume or an unknown shallower magmatic reservoir. Deep rooted faults are thought to act as preferential pathways. Overall low temperatures of pouhons (~10 °C) and short estimated residence times (up to 60 years) suggest magmatic CO2 is transported upwards to meet infiltrating groundwater at shallower depths, with partial to full isotopic exchange with carbonate rocks along its path, resulting in mixed magmatic-carbonate signature. Although the precise role and interaction of the involved subsurface processes remains debatable, this review study provides a baseline for future investigations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.