Abstract

Accurately measuring and controlling the electrical properties of semiconductor nanowires is of paramount importance in the development of novel nanowire-based devices. In light of this, terahertz (THz) conductivity spectroscopy has emerged as an ideal non-contact technique for probing nanowire electrical conductivity and is showing tremendous value in the targeted development of nanowire devices. THz spectroscopic measurements of nanowires enable charge carrier lifetimes, mobilities, dopant concentrations and surface recombination velocities to be measured with high accuracy and high throughput in a contact-free fashion. This review spans seminal and recent studies of the electronic properties of nanowires using THz spectroscopy. A didactic description of THz time-domain spectroscopy, optical pump–THz probe spectroscopy, and their application to nanowires is included. We review a variety of technologically important nanowire materials, including GaAs, InAs, InP, GaN and InN nanowires, Si and Ge nanowires, ZnO nanowires, nanowire heterostructures, doped nanowires and modulation-doped nanowires. Finally, we discuss how THz measurements are guiding the development of nanowire-based devices, with the example of single-nanowire photoconductive THz receivers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.