Abstract

Recently, with the rapid development of aerospace technology, an increasing number of spacecraft is being launched into space. Additionally, the demands for on-orbit servicing (OOS) missions are rapidly increasing. Space robotics is one of the most promising approaches for various OOS missions; thus, research on space robotics technologies for OOS has attracted increased attention from space agencies and universities worldwide. In this paper, we review the structures, ground verification, and on-orbit kinematics calibration technologies of space robotic systems for OOS. First, we systematically summarize the development of space robotic systems and OOS programs based on space robotics. Then, according to the structures and applications, these systems are divided into three categories: large space manipulators, humanoid space robots, and small space manipulators. According to the capture mechanisms adopted, the end-effectors are systematically analyzed. Furthermore, the ground verification facilities used to simulate a microgravity environment are summarized and compared. Additionally, the on-orbit kinematics calibration technologies are discussed and analyzed compared with the kinematics calibration technologies of industrial manipulators with regard to four aspects. Finally, the development trends of the structures, verification, and calibration technologies are discussed to extend this review work.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call