Abstract

Urban areas are more susceptible to flooding and water body contamination due to the detrimental effects of urbanization. As a result, a sustainable urban drainage system, also known as low impact development (LID) technique, is required. Although this technique can be extensively applied, the planning and design processes are multi-dimensional, multi-variable, and site-specific, which must consider various local conditions and factors. Consequently, these processes can be very complicated and time-consuming for professionals, necessitating support from computer modeling. This study intends to thoroughly explore the idea of LID modeling, various available computer models, and other tools for its optimization and decision-making processes. The most recent trustworthy journal publications that addressed the subjects under discussion were reviewed. This paper used the descriptive and comparative approaches as the analytical methods. According to the findings of the review, Storm Water Management Model (SWMM) is the computer model in LID modeling that is most frequently employed. This model is a fundamental package for dynamic urban rainfall-runoff modeling, and it has the benefits of being lightweight, simple to use, and an intuitive user interface. Besides, this model is public domain (free to use), open source, and interoperable with many hydro modeling applications. A specific LID editor module is also included in this model for modeling different LID units. To acquire the best LID planning and design from multiple criteria and alternatives, it is also necessary to use metaheuristic algorithms as an optimization model and a multi-criteria decision-making (MCDM) model in addition to the rainfall-runoff model. The authors believe combining the hydrologic and hydraulics models integrated with geographical information systems (GIS), metaheuristic algorithms, and MCDM is the most comprehensive and appropriate method for LID modeling in urban watersheds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.