Abstract
Optical coherence tomography (OCT) is an emerging imaging technique for diagnosing ophthalmic diseases and the visual analysis of retinal structure changes, such as exudates, cysts, and fluid. In recent years, researchers have increasingly focused on applying machine learning algorithms, including classical machine learning and deep learning methods, to automate retinal cysts/fluid segmentation. These automated techniques can provide ophthalmologists with valuable tools for improved interpretation and quantification of retinal features, leading to more accurate diagnosis and informed treatment decisions for retinal diseases. This review summarized the state-of-the-art algorithms for the three essential steps of cyst/fluid segmentation: image denoising, layer segmentation, and cyst/fluid segmentation, while emphasizing the significance of machine learning techniques. Additionally, we provided a summary of the publicly available OCT datasets for cyst/fluid segmentation. Furthermore, the challenges, opportunities, and future directions of artificial intelligence (AI) in OCT cyst segmentation are discussed. This review is intended to summarize the key parameters for the development of a cyst/fluid segmentation system and the design of novel segmentation algorithms and has the potential to serve as a valuable resource for imaging researchers in the development of assessment systems related to ocular diseases exhibiting cyst/fluid in OCT imaging.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.