Abstract

As the amount and complexity of biomedical data continue to increase, machine learning methods are becoming a popular tool in creating prediction models for the underlying biomedical processes. Although all machine learning methods aim to fit models to data, the methodologies used can vary greatly and may seem daunting at first. A comprehensive review of various machine learning algorithms per biomedical applications is presented. The key concepts of machine learning are supervised and unsupervised learning, feature selection, and evaluation metrics. Technical insights on the major machine learning methods such as decision trees, random forests, support vector machines, and k-nearest neighbors are analyzed. Next, the dimensionality reduction methods like principal component analysis and t-distributed stochastic neighbor embedding methods, and their applications in biomedical data analysis were reviewed. Moreover, in biomedical applications predominantly feedforward neural networks, convolutional neural networks, and recurrent neural networks are utilized. In addition, the identification of emerging directions in machine learning methodology will serve as a useful reference for individuals involved in biomedical research, clinical practice, and related professions who are interested in understanding and applying machine learning algorithms in their research or practice.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.