Abstract
Logistic regression models used to predict tree mortality are critical to post-fire management, planning prescribed burns and understanding disturbance ecology. We review literature concerning post-fire mortality prediction using logistic regression models for coniferous tree species in the western USA. We include synthesis and review of: methods to develop, evaluate and interpret logistic regression models; explanatory variables in logistic regression models; factors influencing scope of inference and model limitations; model validation; and management applications. Logistic regression is currently the most widely used and available technique for predicting post-fire tree mortality. Over 100 logistic regression models have been developed to predict post-fire tree mortality for 19 coniferous species following wild and prescribed fires. The most widely used explanatory variables in post-fire tree mortality logistic regression models have been measurements of crown (e.g. crown scorch) and stem (e.g. bole char) injury. Prediction of post-fire tree mortality improves when crown and stem variables are used collectively. Logistic regression models that predict post-fire tree mortality are the basis of simple field tools and contribute to larger fire-effects models. Future post-fire tree mortality prediction models should include consistent definition of model variables, model validation and direct incorporation of physiological responses that link to process modelling efforts.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have