Abstract
Purpose of ReviewArtificial intelligence (AI) offers a new frontier for aiding in the management of both acute and chronic pain, which may potentially transform opioid prescribing practices and addiction prevention strategies. In this review paper, not only do we discuss some of the current literature around predicting various opioid-related outcomes, but we also briefly point out the next steps to improve trustworthiness of these AI models prior to real-time use in clinical workflow.Recent FindingsMachine learning-based predictive models for identifying risk for persistent postoperative opioid use have been reported for spine surgery, knee arthroplasty, hip arthroplasty, arthroscopic joint surgery, outpatient surgery, and mixed surgical populations. Several machine learning-based models have been described to predict an individual’s propensity for opioid use disorder and opioid overdose. Natural language processing and large language model approaches have been described to detect opioid use disorder and persistent postsurgical opioid use from clinical notes. Summary AI holds significant promise in enhancing the management of acute and chronic opioids, which may offer tools to help optimize dosing, predict addiction risks, and personalize pain management strategies. By harnessing the power of AI, healthcare providers can potentially improve patient outcomes, reduce the burden of opioid addiction, and contribute to solving the opioid crisis.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have