Abstract

AbstractLearning is one of the important research fields in artificial intelligence. This paper begins with an outline of the definitions of learning and intelligence, followed by a discussion of the aims of machine learning as an emerging science, and an historical outline of machine learning. The paper then examines the elements and various classifications of learning, and then introduces a new classification of learning based on the levels of representation and learning as knowledge-, symboland device-level learning. Similarity- and explanation-based generalization and conceptual clustering are described as knowledge level learning methods. Learning in classifiers, genetic algorithms and classifier systems are described as symbol level learning, and neural networks are described as device level systems. In accordance with this classification, methods of learning are described in terms of inputs, learning algorithms or devices, and outputs. Then there follows a discussion on the relationships between knowledge representation and learning, and a discussion on the limits of learning in knowledge systems. The paper concludes with a summary of the results drawn from this review.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.