Abstract

In recent years, medium manganese steels (MMSs) have garnered increased attention and interest due to their relatively low cost and superior combination properties compared to other steels. In particular, MMSs have been recognised as ideal wear-resistant materials employed in the mining industry. However, the studies on their wear performance have a lack of systematic documentation. This review provides an extensive overview of recent advances in the wear performance of MMSs, starting from discussions on applicable wear testing methods and typical wear testing results, followed by a further discussion on the wear mechanisms of MMSs based on five wear characteristics, including abrasive wear, adhesive wear, corrosive wear, fatigue wear and impact wear. The effects of hardness and hardened layers on the wear mechanisms are also discussed. Finally, the influence of phase constitution and microstructure on the wear performance of MMSs are comprehensively elaborated in terms of transformation induced plasticity (TRIP), twinning induced plasticity (TWIP), alloy elements and heat treatment. The key factors that affect the wear performance of MMSs include the elemental composition in MMSs and the phase transformation occurred during TRIP and TWIP as well as various heat treatment processes. The current review of key factors affecting the wear performance of MMSs sheds some light on new strategies to enhance the service performance and longevity of wear resistant steels in various engineering applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.