Abstract

Biomaterials are a cornerstone technology of the biomedical device, tissue engineering, and regenerative medicine industries. While traditional biomaterials are fully defined synthetics, growing evidence supports the use of extracellular matrix-based biomaterials produced through the decellularization of organs, tissues, or cell cultures. These materials are particularly advantageous as they largely retain the structure and the biochemical nature of the original tissue, properties that are often difficult to reproduce with synthetics. Indeed, there are many FDA-approved and clinically used extracellular matrix-based materials that are generated through decellularization processes. In this review, we first describe methods of decellularization used to produce these materials and their associated advantages and limitations, discuss the current use of extracellular matrix-based materials in regenerative engineering applications, describe the areas where current research is occurring, and forecast areas where impactful research may appear. The regeneration of tissues often requires a scaffold material to support and guide the cells that are performing the repair. Often, these materials are manmade and lack many of the key features present in native tissue. However, a tissue can be processed to remove its cells (a process called decellularization), leaving behind a scaffold of proteins and polysaccharides known as the extracellular matrix. These decellularized matrices are attractive scaffolds for use in regenerative medicine applications, and they are the subject of this review.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.