Abstract
Abstract Timely and accurate estimation of crop yield before harvest to allow crop yields management decision-making at a regional scale is crucial for national food policy and security assessments. Modeling dynamic change of crop growth is of great help because it allows researchers to determine crop management strategies for maximizing crop yield. Remote sensing is often used to provide information about important canopy state variables for crop models of large regions. Crop models and remote sensing techniques have been combined and applied in crop yield estimation on a regional scale or worldwide based on the simultaneous development of crop models and remote sensing. Many studies have proposed models for estimating canopy state variables and soil properties based on remote sensing data and assimilating these estimated canopy state variables into crop models. This paper, firstly, summarizes recent developments of crop models, remote sensing technology, and data assimilation methods. Secondly, it compares the advantages and disadvantages of different data assimilation methods (calibration method, forcing method, and updating method) for assimilating remote sensing data into crop models and analyzes the impacts of different error sources on the different parts of the data assimilation chain in detail. Finally, it provides some methods that can be used to reduce the different errors of data assimilation and presents further opportunities and development direction of data assimilation for future studies. This paper presents a detailed overview of the comparative introduction, latest developments and applications of crop models, remote sensing techniques, and data assimilation methods in the growth status monitoring and yield estimation of crops. In particular, it discusses the impacts of different error sources on the different portions of the data assimilation chain in detail and analyzes how to reduce the different errors of data assimilation chain. The literature shows that many new satellite sensors and valuable methods have been developed for the retrieval of canopy state variables and soil properties from remote sensing data for assimilating the retrieved variables into crop models. Additionally, new proposed or modified crop models have been reported for improving the simulated canopy state variables and soil properties of crop models. In short, the data assimilation of remote sensing and crop models have the potential to improve the estimation accuracy of canopy state variables, soil properties and yield based on these new technologies and methods in the future.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.