Abstract
PurposeAdditive manufacturing (AM) is revolutionizing the manufacturing industry due to several advantages and capabilities, including use of rapid prototyping, fabrication of complex geometries, reduction of product development cycles and minimization of material waste. As metal AM becomes increasingly popular for aerospace and defense original equipment manufacturers (OEMs), a major barrier that remains is rapid qualification of components. Several potential defects (such as porosity, residual stress and microstructural inhomogeneity) occur during layer-by-layer processing. Current methods to qualify AM parts heavily rely on experimental testing, which is economically inefficient and technically insufficient to comprehensively evaluate components. Approaches for high fidelity qualification of AM parts are necessary.Design/methodology/approachThis review summarizes the existing powder-based fusion computational models and their feasibility in AM processes through discrete aspects, including process and microstructure modeling.FindingsCurrent progresses and challenges in high fidelity modeling of AM processes are presented.Originality/valuePotential opportunities are discussed toward high-level assurance of AM component quality through a comprehensive computational tool.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.