Abstract

The overall prevalence rate for CNS pathology has demonstrated that approximately more than one billion people are undergoing from disorders of central nervous system. The most distressing fact about delivery of drugs to the CNS is the presence of blood brain barrier that have a tendency to impair the drug distribution and denotes the major impediment for the development of CNS drugs. Neuropeptides and many drugs which are hydrophilic in nature possibly will encompass the intricacy while passing the blood brain barrier. The net amount of delivered drug (medicinal agent) and its capability to gain access to the pertinent target sites are the main considering points for CNS drug development. Brain targeted drug delivery to the brain is valuable in the diseases of brain. (Alzheimer’s diseases, meningitis, brain abscess, epilepsy, multiple sclerosis, neuromylitis optica, sleeping disorders etc). Whereby high concentration can be gained with lesser side effects that occur because of release of drugs. The simplest method of targeting to brain is to obtain a therapeutic. Brain targeting systems to remain in the brain region by crossing BBB and hence significantly helps in increasing therapeutic activity. There is an increasing attraction towards brain targeting and sue to its immense application in the treatment of various CNS diseases because mostly drugs are unable to cross the BBB. This review article discuss one of the novel technology “nanotechnology” and other aspects that has been developed to target the brain and possess various clinical benefits such as reduced drug dose, less side effects, non-invasive routed, and better patient compliance.

Highlights

  • The brain specific delivery is a part of targeted drug delivery system

  • As a proof of this possibility, transfection of neuronal SH-SY5Y cells was achieved with the lipoplexes at a degree much higher than the degree obtained with the widely and commonly utilized transfectant Lipofectamine; cationic liposomes carrying a photo reactive drug resulted in a laser-stimulated cytotoxic effect on glioblastoma cells and showed the ability to improve brain drug delivery of paclitaxel in rodents in vivo

  • Now-a-days, many researchers are attracted towards brain targeting; due to its immense application in the treatment of various CNS diseases because mostly drugs are unable to cross the Blood brain barrier

Read more

Summary

Introduction

The brain specific delivery is a part of targeted drug delivery system. This targeted drug delivery system includes many aspects. The possibility for BBB-impermeant drugs to reach the brain, when vehicled by NPs is based upon the fact that their crossing of the barrier will depend completely on the physicochemical and biomimetic features of the NPs vehicle and will not depend anymore on the chemical structure of the drug, which is hindered inside the NPs. What makes NPs even more attractive for medical applications is the possibility of conferring on them features such as high chemical and biological stability, feasibility of incorporating both hydrophilic and hydrophobic pharmaceuticals, and the ability to be administered by a variety of routes[35] (including oral, inhalational, and parenteral). The liposomes and nanocytes play a very important role in brain specific drug delivery system

10. Liposomes
11. Monocytes in brain drug delivery
12. Challenges of CNS drug development
14. Deaths
16. Material and methods
Findings
20. Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.