Abstract

A general purpose instability model is derived for the variation of device parameters which is related to the activation–deactivation of statistically independent microscopic defects, with reversible first-order reaction kinetics and distributed rate constants. The model is aimed at predicting the parametric instability of electronic devices under periodic AC stimulus of arbitrary waveform over a wide time-scale range covering the whole device lifetime. As a practical application, we extracted a model for the negative-bias temperature instability of a p-channel type silicon MOSFET, including both the recovery effects and the voltage–temperature dependence. The model can be implemented in commercially available tools for the compact simulation of integrated circuits.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.