Abstract

Organogenesis of the trachea and lungs requires a complex series of mesoderm-endoderm interactions mediated by WNT, BMP, retinoic acid (RA), and hedgehog (Hh), but how these pathways interact ina gene regulatory network is less clear. Using Xenopus embryology, mouse genetics, and human ES cell cultures, we identified a conserved signaling cascade that initiates respiratory lineage specification. We show that RA has multiple roles; first RA pre-patterns the lateral plate mesoderm and then itpromotes Hh ligand expression in the foregut endoderm. Hh subsequently signals back to the pre-patterned mesoderm to promote expression of the lung-inducing ligands Wnt2/2b and Bmp4. Finally, RA regulates the competence of the endoderm to activate the Nkx2-1+ respiratory program in response to these mesodermal WNT and BMP signals. These data provide insights into early lung development and a paradigm for how mesenchymal signals are coordinated with epithelial competence during organogenesis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call