Abstract

The mechanical damage caused by the insertion of a foreign body into living tissue is inevitable, especially when a considerable stiffness mismatch is present, as in the case of micromachined neural implants and brain tissue. However, the response surface model based on a central composite experimental design described in this study showed that for particular configurations of the implant tip angle, width, thickness or insertion speed, some of these factors could be safely increased without causing an unwanted significant force or tissue dimpling increase. The model covers chisel tip angles between 10° and 50°, implant widths within the 200–400 µm range and thicknesses between 50 and 150 µm. The insertion speed has been varied from 10 up to 100 µm s−1 to reach a final insertion depth of 6 mm. Coating the implant with parylene C proved to be beneficial in reducing the friction between the implant and the surrounding tissue. Successfully validated for a particular implant geometry, this model could be used as an insertion behavior prediction tool for the design optimization of future neural implants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.