Abstract

Recently, the demand for a faster , low-latency, and full-coverage Maritime Communication Network (MCN) has gained attention as marine operations have increased substantially. Using modern information network technologies and integrating space, air, ground, and sea network segments, MCN may be able to offer worldwide coverage and diverse Quality-of-Service (QoS) provisioning. These network segments are expected to provide not only traditional communication services, but also processing, caching, sensing, and control capabilities when linked via Sixth Generation (6G) mobile networks. However, this development in infrastructure growth is subjected to new security and privacy concerns due to open links, moving nodes, and diverse collaborative algorithms. In this paper, we propose an improved and resource friendly authentication scheme for the space–air–ground–sea integrated maritime communication network using Elliptic Curve Cryptography (ECC). To validate the security hardness of the proposed scheme, formal security assessment method such as Random Oracle Model (ROM) is used. Finally, comparisons with relevant authentication schemes are provided in terms of computation and communication costs. The findings support the viability of the proposed scheme.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.