Abstract

Along with the development of digital health, efficient machine learning is anxiously needed to handle the growing health data. Among various machine learning algorithms, back propagation neural network (BPNN) shows great effectiveness in both academia and industrial fields. However, it is frequently reported that the conventional BPNN algorithm encounters low efficiency issue in dealing with large-scale digital health data. Therefore this paper presents a Hadoop based parallelized BPNN algorithm which is able to process the large-scale data efficiently. In order to complement the potential accuracy loss issue for the parallelized data processing, ensemble learning techniques are also involved. Additionally although Hadoop supplies a number of default schedulers, the heterogeneous distributed computing environment may still impact the efficiency of the parallelized BPNN. Consequently, this paper also presents a gene expression programming (GEP) algorithm based load balancing approach, which enables the computing resource awareness and the optimal scheduling of the parallelized BPNN. The experiments employ the classification task as the underlying testing basis. Two types of the experiments are carried out, in which the first one focuses on evaluating the accuracy of the presented algorithm with classifying the benchmark dataset; the second one focuses on evaluating the efficiency of the presented algorithm with classifying the large-scale dataset. The experimental results show the effectiveness of the presented resource aware parallelized BPNN algorithm.

Highlights

Read more

Summary

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.