Abstract
This paper investigated the popularity and difficulty level of Wordle, an online daily puzzle game. The study examined the number of players reporting scores, the number of players on hard mode, and the percentage of players who guessed the word. After removing outliers and misspelling words, the study used time series analysis to predict future numbers of reported results. We found that Wordle had entered the decline period and recommended the last 150 days' smooth data for more accurate prediction interval results. Furthermore, the study developed the Wordle Word n-tries Percentage Prediction Model, which accurately predicts the associated percentages of tries required to solve a given word. The model uses the Regressor Chain algorithm to correlate independent variables such as word frequency, lexical properties, number of common letter combinations, and date with dependent variables. Based on the Decision Tree, the model predicts the associated percentages of tries required to solve a given word.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.