Abstract
Erosion of piping components, e.g., elbows, is a hazardous phenomenon that frequently occurs due to sand flow with fluids during petroleum production. Early prediction of the sand's erosion rate (ER) is essential for ensuring a safe flow process and material integrity. Some models have been applied to determine the ER of the sand in the literature. However, these models have been created based on specific data to require a model for application to wide-range data. Moreover, the previous models have not studied relationships between independent and dependent variables. Thus, this research aims to use machine learning techniques, namely linear regression and decision tree (DT), to predict the ER robustly. The optimum model, the DT model, was evaluated using various trend analysis and statistical error analyses (SEA) techniques, namely the correlation coefficient (R). The evaluation results proved proper physical behavior for all independent variables, along with high accuracy and the DT model robustness. The proposed DT method can accurately predict the ER with R of 0.9975, 0.9911, 0.9761, and 0.9908, AAPRE of 5.0%, 6.27%, 6.26%, and 5.5%, RMSE of 2.492E-05, 6.189E-05, 9.310E-05, and 5.339E-05, and STD of 13.44, 6.66, 8.01, and 11.44 for the training, validation, testing, and whole datasets, respectively. Hence, this study delivers an effective, robust, accurate, and fast prediction tool for ER determination, significantly saving the petroleum industry's cost and time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.