Abstract

Drosophila abnormal spindle (asp) mutants exhibit a mitotic metaphase checkpoint arrest with abnormal spindle poles, which reflects a requirement for Asp for the integrity of microtubule organising centres (MTOCs). In male meiosis, the absence of a strong spindle integrity checkpoint enables asp mutant cells to proceed through anaphase and telophase. However, the central spindle region is not correctly organised and cells frequently fail to complete cytokinesis. This contrasts with meiosis in wild-type males where at late anaphase a dense array of microtubules forms in the central spindle region that has Asp localised at its border. We speculate that Asp is associated with the minus ends of microtubules that have been released from the spindle poles to form the central spindle. A parallel situation arises in female meiosis where Asp not only associates with the minus ends of microtubules at the acentriolar poles but also with the central spindle pole body that forms between the two tandem spindles of meiosis II. Upon fertilisation, Asp is also recruited to the MTOC that nucleates the sperm aster. Asp is required for growth of the microtubules of the sperm aster, which in asp mutants remains diminutive and so prevents migration of the pronuclei.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.