Abstract

Apatite (U–Th)/He and fission-track dates, as well as 4He/3He and fission-track length data, provide rich thermal history information. However, numerous choices and assumptions are required on the long road from raw data and observations to potentially complex geologic interpretations. This paper outlines a conceptual framework for this path, with the aim of promoting a broader understanding of how thermochronologic conclusions are derived. The tiered structure consists of thermal history model inputs at Level 1, thermal history model outputs at Level 2, and geologic interpretations at Level 3. Because inverse thermal history modeling is at the heart of converting thermochronologic data to interpretation, for others to evaluate and reproduce conclusions derived from thermochronologic results it is necessary to publish all data required for modeling, report all model inputs, and clearly and completely depict model outputs. Here we suggest a generalized template for a model input table with which to arrange, report and explain the choice of inputs to thermal history models. Model inputs include the thermochronologic data, additional geologic information, and system- and model-specific parameters. As an example we show how the origin of discrepant thermochronologic interpretations in the Grand Canyon can be better understood by using this disciplined approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.