Abstract

In the field of image-guided surgery, Augmented Reality wearable displays are a widely studied and documented technology for their ability to provide egocentric vision together with the overlap between real and virtual content. In particular, optical see-through (OST) displays have the advantage of maintaining visual perception of the real world. However, OST displays suffer from vergeance-accomodation conflict when virtual content is superimposed on real world. Furthermore, the calibration methods required to achieve geometric consistency between real and virtual are inherently error-prone. One of the solutions, already studied, to these problems is to use of integral imaging displays. In this paper we present an easy and straightforward real-time rendering strategy implemented in modern OpenGL to show the 3D image of a virtual object on a wearable OST display deploying the integral imaging approach. Clinical Relevance- The algorithm proposed open the way towards more effective AR surgical navigation in terms of comfort of the AR experience and accuracy of the AR guidance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.