Abstract
Recently watershed prioritization has become a pragmatic approach for watershed management and natural resources development. Wadi Shueib is a Jordan Rift valley and covers an area of 177.8 km2. The upper catchment is of dry Mediterranean climate, whereas the lower part is arid. The drainage network is sub-dendritic pattern, with a trellis pattern developed due to the influence of W. Shueib structure. Fourteen mini-watersheds were delineated and designated as (MW 1 to MW 14) for prioritization purposes. Morphometric analysis, and soil erosion susceptibility analysis were conducted, and their values were calculated for each mini-watersheds. Based on value/relationship with erodibility, different prioritization ranks were ascribed following the computation of compound factors. Based on morphometric and soil erosion susceptibility analysis, and the resultant ranks, the mini-watersheds have been classified into four categories in relation to their priority for soil conservation measures: very high, high, moderate, and low. It is found that 64.3% of the 3rd order mini-watersheds are classified in the categories of very high and high priority. Based on soil erosion susceptibility analysis, three mini-watersheds are of very high priority and three are of high priority. The integration of morphometric and soil erosion susceptibility methods shows that mini-watersheds no.2 and no.3 are common mini-watersheds, and can be classified in the class of moderate and low priority respectively. By contrast, two mini-watersheds (no.8 and no.13) are categorized in the class of high priority based on morphometric analysis, and are classified in the category of very high priority based on soil erosion susceptibility analysis. Similarly, mini-watershed no.14 can be placed in the category of very high priority based on morphometric analysis, and ranks in the category of high priority based on soil erosion susceptibility analysis. With reference to the integration of the two methods of prioritization, it can be concluded that most of the mini-watersheds can be categorized in the classes moderate, high, and very high priority. Consequently, the entire W. Shueib watershed must be prioritized for soil and water conservation to ensure future sustainable agriculture and development of natural resources.
Highlights
Soil erosion is considered a major problem in the rainfed highlands of Jordan
The Kurnub sandstone is overlain by two lithological units of Upper Cretaceous age: the nodular limestone unit which is predominantly marls and clays interbedded with marly limestones, limestones, nodular limestone, and dolomites
Two mini-watersheds are ranked in the category of high priority based on morphometric analysis, and are classified in the category of very high priority based on soil erosion susceptibility analysis (Figure 8)
Summary
Soil erosion is considered a major problem in the rainfed highlands of Jordan. Erosion of the top soil leads to continuous land degradation and decline of soil quality and productivity. The drainage basin has been considered an ideal unit for watershed management and sustainable development of natural resources Watershed management in this context implies the process of formulating and executing a course of intervention in the watershed targeted to appropriate utilization of land, soil, forest, and water resources in a watershed. Ten linear and shape morphometric parameters in relation to erodibility have been adopted: five linear parameters(bifurcation ratio, drainage density (km/km2), texture ration, length of overland flow, and stream frequency (km/km2), texture ration, length of overland flow, and stream frequency (km/km2); and five shape parameters (compactness coefficient, circularity ratio, elongation ratio, shape factor, and form factor) Such parameters are aimed to identify prioritized sub-watersheds for conservation on more consistent bases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.