Abstract

Remote sensing and GIS techniques were employed for prioritization of the Zerqa River watershed. Forty-three 4th order sub-watersheds were prioritized based on morphometric and Principal Component Analysis (PCA), in order to examine the effectiveness of morphometric parameters in watershed prioritization. A comparison has been carried out between the results achieved through applying the two methods of analysis (morphometric and PCA). Afterwards, suitable measures are proposed for soil and water conservation. Topo sheets and ASTER DEM have been employed to demarcate the 43 sub-watersheds, to extract the drainage networks, and to compile the required thematic maps such as slope categories and elevation. LANDSAT 8 image (April-2015) is employed to generate land use/cover maps using ENVI (v 5.1) software. The soil map of the watershed has been digitized using Arc GIS software. Prioritization of the 43 sub-watersheds was performed using ten linear and shape parameters, and three parameters which are highly correlated with components 1 and 2. Subsequently, different sub-watersheds were prioritized by ascribing ranks based on the calculated compound parameters (Cp) using the two approaches. Comparison of the results revealed that prioritization of watersheds based on morphometric analysis is more consistent and serves for better decision making in conservation planning as compared with the PCA approach. The recommended soil conservation measures are prescribed in accordance with the specified priority, in order to avoid undesirable effects on land and environment. Sub-watersheds classified under high priority class are subjected to high erosion risk, thus, creating an urgent need for applying soil and water conservation measures. It is expected that decision makers will pay sufficient attention to the present results/information, activate programs encouraging soil conservation, integrated watershed management, and will continue working on the afforestation of the government-owned sloping lands. Such a viable approach can be applied at different parts of the rainfed highland areas to minimize soil erosion loss, and to increase infiltration and soil moisture in the soil profile, thus, reducing the impact of recurrent droughts and the possibility of flooding hazards.

Highlights

  • Soil erosion by water is considered a major cause for land degradation in Jordan

  • The present study focused on: 1. Prioritization of 43 sub-watersheds for soil conservation based on morphometric analysis using geographic information system (GIS) and remote sensing (RS), and Principal Component Analysis (PCA), 2

  • The prioritized sub-watersheds are located in three different bio-climatic zones which are varied in terms of physical conditions

Read more

Summary

Introduction

Soil erosion by water is considered a major cause for land degradation in Jordan. Soil erosion is not a recent problem in the country. In light of the predominant high soil erosion loss and sediment yield rates, specific sub-watersheds show potential areas for preferential conservation intervention, and must be prioritized immediately for soil and water conservation practices, so as to maintain future agricultural sustainability [33]. Erosion risk parameters represented by linear and shape morphometric variables must be calculated to prioritize watersheds for soil conservation. Morphometric aspects associated with predicted annual soil loss parameter, based on the USLE or RUSLE models, or soil erosion susceptibility analysis were employed for identifying potential sub-watersheds for conservation works planning [52]. Information pertaining to present land use/cover, slope, and soil type is employed to help in suggesting suitable soil conservation measures for different sub-watersheds of the Zerqa River. The chosen parameters are reported to be the most consistent variables in prioritizing sub-watersheds for conservation practice

The Study Area
Materials and Methodology
Morphometric Analysis
A P Lb Lu Rb Dd Fs Tr Lo Rf Bs Re Cc
Proposed Soil and Water Conservation Measures
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call