Abstract
The degree of organised alignment of fibre structures, referred to as the degree of orientation, significantly influences the textural properties and consumer acceptance of fibrous foods. To develop a new method to quantitatively characterise the fibre structure of such foods, a laser transmission imaging system is constructed to capture the laser beam spot on a sample, and the resulting image undergoes a series of image processing steps that use computer vision to translate the light and dark variations of the original images into distinct ellipses. The results show that the degree of orientation can be reasonably calculated from the ellipse obtained by fitting the outermost isopixel points. To validate the reliability of the newly developed method, we determine the degree of orientation of typical fibrous foods (extruded beef jerky, pork jerky, chicken jerky, and duck jerky). The ranking of the measured orientation agrees with the results of pseudocolour maps and micrographs, confirming the ability of the method to distinguish different fibrous foods. Furthermore, the relatively small coefficients of variation and the strong positive correlation between the degree of organisation and the degree of orientation confirm the reliability of this newly developed method.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have