Abstract
Fault management is an important function that impacts the design of any digital system, from the simple kiosk in a shop to a complex 6G network. It is common to classify fault conditions into different taxonomies using terms like fault or error. Fault taxonomies are often suitable for managing fault detection, fault reporting, and fault localization but often neglect to support all different functions required by a fault management process. A correctly implemented fault management process must be able to distinguish between defects and faults, decide upon ap-propriate actions to recover the system to an ideal state, and avoid an error condition. Fault management is a multi-disciplinary process where recovery actions are deployed promptly by com-bined hardware, firmware, and software orchestration. The importance of fault management processes significantly increases with modern nanometer technologies, which suffer the risk of so-called soft errors, a corruption of a bit cells that can happen due to spurious disturbance, like cosmic radiation. Modern fault management implementations must support recovery actions for soft errors to ensure a steady system. This paper describes an extended fault classification model that emphasizes fault management and recovery actions. We aim to show how the reliability-based fault taxonomy definition is more suitable for the overall fault management process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.