Abstract

AbstractA considerable amount of research has been carried out on the prediction of mean stress effects on fatigue crack growth in structures. Newer types of structure are now being developed for use in highly dynamic, harsh marine environments, particularly for renewable energy applications. Therefore, the extent to which mean stresses can enhance corrosion‐assisted fatigue damage in these structures needs to be better understood. A new theoretical model that accounts for mean stress effects on corrosion fatigue crack growth is proposed. The model is developed based on the relative crack opening period per fatigue cycle and by considering only the damaging portion of the stress cycle. The baseline data for the modelling exercise are the data obtained at a stress ratio of 0.1 in air and seawater tests conducted on compact tension specimens. The model is validated by comparison with experimental data and with other fatigue crack propagation models. The proposed model correlates fairly well with experimental data and the other models examined.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.