Abstract

Polyak showed that any Milnor’s [Formula: see text]-invariant of length 3 can be represented as a combination of the Conway polynomials of knots obtained by certain band sum of the link components. On the other hand, Habegger and Lin showed that Milnor invariants are also invariants for string links, called [Formula: see text]-invariants. We show that any Milnor’s [Formula: see text]-invariant of length [Formula: see text] can be represented as a combination of the HOMFLYPT polynomials of knots obtained from the string link by some operation, if all [Formula: see text]-invariants of length [Formula: see text] vanish. Moreover, [Formula: see text]-invariants of length [Formula: see text] are given by a combination of the Conway polynomials and linking numbers without any vanishing assumption.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.