Abstract
We define and develop an interior partial regularity theory for intrinsic energy minimising fractional harmonic maps from Euclidean space into smooth compact Riemannian manifolds for fractional powers strictly between zero and one. Intrinsic fractional harmonic maps are critical points of an energy whose first variation is a Dirichlet to Neumann map for the harmonic map problem on a half-space with a Riemannian metric which can degenerate/become singular along the boundary, depending on the fractional power. Similarly to the approach used to prove regularity for stationary intrinsic semi-harmonic maps, we take advantage of the connection between fractional harmonic maps and free boundary problems for harmonic maps in order to develop a partial regularity theory for the fractional harmonic maps we consider. In particular, we prove partial regularity for locally minimising harmonic maps with (partially) free boundary data on half-spaces with the aforementioned metrics up to the boundary; fractional harmonic maps then inherit this regularity. As a by-product of our methods we shed some new light on the monotonicity of the average energy of solutions of the degenerate linear elliptic equation related to fractional harmonic functions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Calculus of Variations and Partial Differential Equations
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.