Abstract
ABSTRACTRegionalization attempts to group units into a few subsets to partition the entire area. The results represent the underlying spatial structure and facilitate decision-making. Massive amounts of trajectories produced in the urban space provide a new opportunity for regionalization from human mobility. This paper proposes and applies a novel regionalization method to cluster similar areal units and visualize the spatial structure by considering all trajectories in an area into a word embedding model. In this model, nodes in a trajectory are regarded as words in a sentence, and nodes can be clustered in the feature space. The result depicts the underlying socio-economic structure at multiple spatial scales. To our knowledge, this is the first regionalization method from trajectories with natural language processing technology. A case study of mobile phone trajectory data in Beijing is used to validate our method, and then we evaluate its performance by predicting the next location of an individual’s trajectory. The case study indicates that the method is fast, flexible and scalable to large trajectory datasets, and moreover, represents the structure of trajectory more effectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Geographical Information Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.