Abstract

A sensitive and efficient method was developed for the detection of genetically modified and wild-type baculovirus occlusion bodies (OB) in forest terrestrial and aquatic habitats. The protocol facilitates the analysis of a large number of samples collected and frozen to maintain viral integrity. Lyophilization was used to standardize the size of both field-collected soil samples and test substrates inoculated with OBs for the determination of minimum detection threshold. To simulate natural conditions, terrestrial test substrates were inoculated at a standardized moisture content determined using a soil pressure plate apparatus. OBs, extracted from lyophilized test substrates by washing, sieving and centrifugation, were subjected to alkaline lysis and viral DNA isolated using a purchased DNA purification kit. PCR amplified DNA was visualized using agarose gel electrophoresis. Minimum detection thresholds in terrestrial substrates were 10(3), 10(2), 10(2) and 10(1) OBs from 0.5 g of lyophilized L, F-H and mineral soil horizons, and 1.0 ml of leachate, respectively. Detection thresholds in aquatic substrates were 10(0) and 10(3) OBs from 1.0 ml of pond water and 1.0 g of bottom sediment, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.