Abstract

Simple SummarySmall birds such as European starlings respond rapidly to environmental challenges by losing or gaining weight. Laboratory studies of these birds are therefore useful for understanding how the environment affects body weight. However, practical constraints including the need to catch birds frequently for weighing has meant that birds are often housed alone in small cages for such studies. Such conditions are unnatural and are likely to cause stress. Consequently, the data obtained from these studies are unrepresentative of wild birds. Here, we describe a novel technology based on smart feeders that permits continuous recording of foraging behaviour and body masses from starlings housed in groups in large indoor aviaries that permit more natural behaviour. We show that the birds quickly learn to use the feeders and that the system delivers detailed real-time data on foraging behaviour and body mass, without the need for frequent catching. The data obtained allowed us to study how the foraging decisions that a bird makes within a single day affect its body weight that day. These improvements in the quality of the data that we are able to collect will help inform our understanding of the environmental causes of weight gain and obesity.Laboratory experiments on passerine birds have been important for testing hypotheses regarding the effects of environmental variables on the adaptive regulation of body mass. However, previous work in this area has suffered from poor ecological validity and animal welfare due to the requirement to house birds individually in small cages to facilitate behavioural measurement and frequent catching for weighing. Here, we describe the social foraging system, a novel technology that permits continuous collection of individual-level data on operant foraging behaviour and body mass from group-housed European starlings (Sturnus vulgaris). We report on the rapid acquisition of operant key pecking, followed by foraging and body mass data from two groups of six birds maintained on a fixed-ratio operant schedule under closed economy for 11 consecutive days. Birds gained 6.0 ± 1.2 g (mean ± sd) between dawn and dusk each day and lost an equal amount overnight. Individual daily mass gain trajectories were non-linear, with the rate of gain decelerating between dawn and dusk. Within-bird variation in daily foraging effort (key pecks) positively predicted within-bird variation in dusk mass. However, between-bird variation in mean foraging effort was uncorrelated with between-bird variation in mean mass, potentially indicative of individual differences in daily energy requirements. We conclude that the social foraging system delivers refined data collection and offers potential for improving our understanding of mass regulation in starlings and other species.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.