Abstract
This paper has two aims: (1) to show for the first time how a natural typology can be established using palaeoecological methods; and (2) to show how it can be used in lake restoration studies with respect to the definition of recovery targets for acidified lakes. By defining the characteristic reference assemblages for low alkalinity site types rather than for a specific site it allows success to be measured more broadly, unconstrained by the specific composition of the pre-acidification flora. We analyse statistically the pre-acidification diatom assemblages of sediment cores from 121 low alkalinity lakes in the UK in order to assess whether a reference typology for such lakes can be defined on the basis of their diatom floras. We use samples dating to ~1850 AD to represent pre-acidification conditions. The results show that three main clusters can be identified, two dominated by benthic taxa (Clusters 1 and 3) and one dominated by planktonic taxa (Cluster 2). Cluster 1 is characterised by taxa such as Brachysira vitrea, Cymbella microcephala and Fragilaria spp., Cluster 2 by Cyclotella comensis, C. radiosa, Asterionella formosa, Aulacoseira subarctica and Achnanthes minutissima and Cluster 3 by Eunotia incisa, Frustulia rhomboides var. saxonica, Fragilaria virescens var. exigua, and Cymbella perpusilla. Although environmental data for 1850 AD are not available it is apparent from the contemporary distribution of the taxa in the different clusters that Cluster 2 represents the most alkaline pre-acidification conditions. Some sites in this cluster have been acidified, but some, especially the larger, deeper lakes have been enriched. Cluster 1 includes sites that contain diatoms with relatively high pH optima (pH 6.4–7.4) whereas Cluster 3 sites contain diatoms with the lowest pre-acidification pH conditions in the data-set. Sites in this cluster also have the lowest base cation concentrations at the present day and include the sites in the UK that have been most affected by acid deposition.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have