Abstract

AbstractDue to its inaccessibility, no complete and coherent data set exists for the composition of modern fast‐spreading oceanic crust. We sampled outcrops through 6,500 m of fossil oceanic crust in the Oman Ophiolite (Wadi Gideah Transect) that is regarded as best analogue of fast‐spreading crust on land. Here we report a complete set of whole‐rock major and trace element data displaying systematic and contrasting compositional trends in lower and upper gabbros being correlated with stratigraphic depth. A significant discontinuity in crystallization regime is observed at ∼3,525 m above the mantle‐crust boundary: gabbros below ∼3,525 m have in general very low incompatible element mass fractions which develop upwards in a barely noticeable way to more differentiated compositions while Mg# decreases. More pronounced trends indicating progressive fractionation of ascending melts can be observed for incompatible elements and their element ratios as a consequence of in situ crystallization. Locally, more variable compositions within narrow depth intervals testify for advanced differentiation in situ within individual sills. Gabbros above ∼3,525 m become significantly more evolved and show considerable variations in composition. Fractional crystallization and mixing processes in a transient axial melt lens control the composition of isotropic “varitextured” gabbros and sheeted dike basalts where fractionation of high field strength elemental ratios is minor. New average compositions of fast‐spread (paleo) oceanic crust are reported for major and 38 trace elements. Comparison with new data from Wadi Khafifah close to Wadi Gideah suggests robustness of crustal accretion processes in both space and time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.